skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bakhtin, Yuri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We use a Voronoi-type tessellation based on a compound Poisson point process to construct a polynomially mixing stationary random smooth planar vector field with bounded nonnegative components such that, with probability one, none of the associated integral curves possess an asymptotic direction. 
    more » « less
  2. We consider (1 + 1)-dimensional directed polymers in a random potential and provide sufficient conditions guaranteeing joint localization. Joint localization means that for typical realizations of the environment, and for polymers started at different starting points, all the associated endpoint distributions localize in a common random region that does not grow with the length of the polymer. In particular, we prove that joint localization holds when the reference random walk of the polymer model is either a simple symmetric lattice walk or a Gaussian random walk. We also prove that the very strong disorder property holds for a large class of space-continuous polymer models, implying the usual single polymer localization. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    We consider the exit problem for a one-dimensional system with random switching near an unstable equilibrium point of the averaged drift. In the infinite switching rate limit, we show that the exit time satisfies a limit theorem with a logarithmic deterministic term and a random correction converging in distribution. Thus, this setting is in the universality class of the unstable equilibrium exit under small white-noise perturbations. 
    more » « less
  7. null (Ed.)
    A mathematical analysis of the evolution of a large population under the weak-mutation limit shows that such a population would spend most of the time in stasis in the vicinity of saddle points on the fitness landscape. The periods of stasis are punctuated by fast transitions, in ln N e /s time ( N e , effective population size; s , selection coefficient of a mutation), when a new beneficial mutation is fixed in the evolving population, which accordingly moves to a different saddle, or on much rarer occasions from a saddle to a local peak. Phenomenologically, this mode of evolution of a large population resembles punctuated equilibrium (PE) whereby phenotypic changes occur in rapid bursts that are separated by much longer intervals of stasis during which mutations accumulate but the phenotype does not change substantially. Theoretically, PE has been linked to self-organized criticality (SOC), a model in which the size of “avalanches” in an evolving system is power-law-distributed, resulting in increasing rarity of major events. Here we show, however, that a PE-like evolutionary regime is the default for a very simple model of an evolving population that does not rely on SOC or any other special conditions. 
    more » « less
  8. null (Ed.)
    Abstract For a one-dimensional smooth vector field in a neighborhood of an unstable equilibrium, we consider the associated dynamics perturbed by small noise. We give a revealing elementary proof of a result proved earlier using heavy machinery from Malliavin calculus. In particular, we obtain precise vanishing noise asymptotics for the tail of the exit time and for the exit distribution conditioned on atypically long exits. We also discuss our program on rare transitions in noisy heteroclinic networks. 
    more » « less